Department of civil, Construction and Environmental Engineering

Ultra-High Performance Concrete and New Opportunities for Prefabrication

Sri Sritharan

Anson Marston Distinguished Professor

August 2023

UHPC Definition

Concrete that has a minimum specified compressive strength of 150 MPa with specified durability, tensile ductility and toughness requirements; fibers are generally included to achieve specified requirements.

ACI Committee 239

Components

Chemical Admixtures

Mineral Admixtures

Proprietary vs. non-proprietary

Waraven 2002

Compression Behavior

Tension Behavior

Typical UHPC Properties

- High compressive strength : 124 MPa to 240 MPa
- Sustained Tensile Capacity: 6 to 10 MPa
- Modulus of Elasticity: 40 to 55 GPa
- Rebar Bond: 8d_b embedment can ensure yield
- Interface Bond: surpass substrate tensile strength
- Low permeability: 100x less than conventional
 - $2 \times 10^{-11} \text{m}^2/\text{s}$ for conventional concrete
 - $2 \times 10^{-12} m^2/s$ for HPC
 - 2 x 10^{-13} m²/s for UHPC
- Freeze/Thaw Resistance: RDM > 95%
- Minimal creep and shrinkage

UHPC vs. HPC vs. NC

- Optimized, fiber-reinforced , heat-treated UHPC
- High Performance Concrete
- Normal Concrete

Property	UHPC	HPC	Normal Concrete
Compressive	26-30 ksi	12-18 ksi	4-8 ksi
Strength	(179-207 MPa)	(82-124 MPa)	(28-55 MPa)
Tensile	1.7 ksi	0.8-0.9 ksi	0.3-0.7 ksi
Strength	(12 MPa)	(5-6 MPa)	(2-5 MPa)
Elastic	8000 ksi	4800-6400 ksi	3600-5100 ksi
Modulus	(55 GPa)	(33-44 GPa)	(25-35 GPa)

Why use UHPC?

- Enhanced durability properties the primary motivation
 - Increased strength is treated as a bonus
- Extend the service life of structures and reduce maintenance costs
- Optimize structural members and systems
- Reduce reinforcing steel congestion and improve constructability
- Cost competitiveness

UHPC for Prefabrication

- Opportunity to create and own UHPC mix design
- Effective use of pre-tensioning and enhanced UHPC products
- Gain full strength through heat treatment
- Potential to increase production
 - Reduction in member sizes
 - Reduced use of labor
- Promote a new generation of accelerated construction
 - Reduced impact on the traveling public
- Contributes to sustainable solutions

Precast UHPC towards Sustainable Solutions

- Slender, shallower members
- Increased lifespan, and reduced maintenance costs
- Reduced transportation impact
- Promote a new generation of accelerated construction
 - Reduced impact on the traveling public
- Facilitate innovation for both architectural and structural elements
- Increase the precast market share

UHPC in Precast Applications

- □ Bridge Girders (traditional I-shape)
- \Box Bridge Superstructure (optimized π -shape)
- □ Bridge Deck System (waffle panels)
 - Connections
- Deck overlay
- Piles
- □ Shell structures
- Wind tubine towers

Optimized Beam Section

2005

Optimized Cross Section

Optimized Superstructure

Waffle Deck

The Overlay Concept

SECTION THRU PANELS

No mechanical connection!

Optimized Pile Section

Parameter	Steel HP 10 x 57	UHPC Tapered H-Shape
Area	16.8 in ² (108 cm ²)	56.8 in ² (366 cm ²)
Weight	57.2 lb/ft (85.1 kg/m)	61.1 lb/ft (90.9 kg/m)
Stiffness Term (E·I)	8.53×10 ⁶ kip∙in² (2.25×10 ¹³ N∙mm²)	6.36×10 ⁶ kip∙in² (1.83×10¹³ N∙mm²)

Completed Unit

Market Penetration - 80m Hub Height

Wind Potential at a 140 m Hub Height

Wind speed at 80 m

Wind speed at 100 m

GLOBAL WIND ATLAS

MEAN WIND SPEED MAP

This map is printed using the Global Wind Atlas online application website owned by the Technical University of Denmark. For more information and terms of use, please visit https://oiobalwindatlas.info

IOWA STATE UNIVERSITY

OTU Wind Energy

WORLD BANK GROUP

ESMAP VORTEX

Benefits of Tall Wind Turbine Towers

- Increased wind speed
- Increased production time
- Use of bigger rotors
- Reduced number of towers
- Reduced LCOE or electricity cost
- Increased areas for wind power production
- More cost-effective than offshore wind power

Hevcrete Technology

- Modularized construction
- Eliminate transportation constraint
 IOWA STATE UNIVERSITY
- Grow local economy
 - Increase service life

CONFIDENTIAL

Partnership

Countries with UHPC Applications

CCEE

Conclusions

- UHPC can provide unique and cost-competitive solutions when
 - their material properties are taken advantage of in the member/system design, and
 - nonconventional solutions are adopted.
- UHPC provides unique opportunities for precast fabrication
 - Slender members
 - Effective use of prestressing
 - Innovative architectural and structural products
- Use a holistic approach in finding UHPC solutions

• UHPC can be used to create more sustainable solutions IOWA STATE UNIVERSITY