

Conventional, new and upcoming concrete materials – a challenge for the fib Model Code

Harald S. Müller, Immediate Past President of the fib

Institute of Concrete Structures and Building Materials – Department Building Materials

Outline

Presentation of concrete models – Challenge for the fib Model Code 2020

- Boundary conditions for concrete worldwide
- Types and design of structural concretes in the future
- Classification of structural concrete in Model Code 2020
- Modelling of structural concrete and associated problems
- Models for strength, deformation and durability
- Conclusions and outlook

Construction sector worldwide – some facts

- Concrete use correlates strongly with the economical growth and the development of the civil infrastructure
- Concrete is indispensible as building material; annual production: 7 billion m³/year; strong increase expected
- Concrete production is associated with 6 - 8 % of the global CO₂ emissions today; ⇒ sustainable concretes will enter the market
- In developed countries rehabilitation exceeds construction of new structures

Paths toward sustainable concrete

4

Concrete development until today

Final shrinkage of concrete – dependence on concrete strength

6

Constitutive strength-based modelling of shrinkage

7

Comparison of eco-concrete and conventional concrete

Performance of eco-concrete – Strength based prediction and measurement

Concrete development in the future

Development of cement-reduced concrete

Excel based software calculates optimal packing density based on the models of Andreasen, de Larrard, Fennis and own works

Virtual concrete design

Simulation of microstructure

Numerical tools to predict: porosity, transport coefficients, strength, ...

Main objective of the chapter "Concrete" in the MC 2020

Provide the designer with input data on material properties

- for crude estimates
- for more sophisticated methods of design
- for FE applications
- Improvement of the models in chapter 5.1 of MC 2010 where necessary
- All types of structural concrete should be covered

Holistic approach of construction's life cycle:

Range of applicability

Criterion	MC 1990	MC 2010	MC 2020		
concrete strength	20 60 (90) MPa	 20 130 MPa normal strength high strength lightweight (10 90 MPa) self-compacting green (eco-concrete) 	 20 130 MPa normal strength high strength lightweight (10 90 MPa) self-compacting green (eco-concrete) ultra-high strength		
concrete type	normal strength		(250 MPa) old concrete		
concrete loads	different ranges of applicability, depending on the related load (static, impact etc.); temperature range: mainly 0 $^{\circ}C < T < 80 ~^{\circ}C$				
tailor-made	reference to test standards				
concrete	or recommendations				

Old concrete – the aging problem

- Aging can't be sufficiently described by hydration
- Interrelation of actions (load, environment) plays a decisive role

Old concrete – creep characteristics

dependent on age of concrete and moisture content (size and environment)

dependent on stress level, age of concrete and moisture content (size and environment)

duration of loading, $t-t_0$

For creep sensitive old structures tests are required. However, creep of old concrete is very low.

Classification of concrete with respect to modelling its performance

Deformation

Shrinkage prediction for Brazilian concretes

Test data and MC 2010 prediction

Statistical assessment

fluência e retração e sua utilização na monitoração de pilares de concreto

The model predicts the total shrinkage deformations for NSC and HSC very well. For HSC a poor prediction of basic shrinkage was seen. However, this is just one test!

Constitutive modelling of shrinkage

MC 2010 and MC 2020 $\varepsilon_{cs}(t,t_s) = \varepsilon_{cbs0}(f_{cm}) \cdot \beta_{bs}(t) + \varepsilon_{cds0}(f_{cm}) \cdot \beta_{RH}(t) \cdot \beta_{ds}(t-t_s)$ ____ basic shrinkage \mathcal{E}_{chs} drying shrinkage \mathcal{E}_{cds} Extension in MC 2020 – final shrinkage Extension in MC 2020 – time-development Basic shrinkage: $\varepsilon_{cs}(t,t_s) = \xi_{cbs1} \cdot \varepsilon_{cbs}(t) + \xi_{cds1} \cdot \varepsilon_{cds}(t,t_s)$ $\beta_{bs}(t) = 1 - \exp\left(-0.2 \cdot \xi_{cbs2} \cdot \sqrt{t}\right)$ Drying shrinkage: Adaption factors for time-development adaption factors $\beta_{ds}(t,t_s) = \left(\frac{(t-t_s)}{0.035 \cdot \xi + s \cdot h^2 + (t-t_s)}\right)^{0.5}$ for final shrinkage

Adaption factors to be determined from a few well-defined shrinkage tests

Improvement of shrinkage prediction by short-term tests

Accuracy gain through tests: Coefficient of variation drops from V \approx 30 % to V \approx 10 %

Constitutive modelling of stress-linear creep

Variable stresses and strain **Constant stress** $\varepsilon_{c\sigma}(t) = J(t, t_{o}) \cdot \sigma_{c}(t_{o}) + \int_{t}^{t} J(t, \tau) \cdot \frac{\partial \sigma_{c}(\tau)}{\partial \tau} \cdot d\tau$ Product type model: $\varphi(\mathbf{t},\mathbf{t}_0) = \beta_1(\mathbf{t}_0) \cdot \ldots \cdot \beta_i \cdot \ldots \cdot \beta_n(\mathbf{t}-\mathbf{t}_0)$ $J(t,t_0) = \frac{1}{E_0(t_0)} + \frac{\phi(t,t_0)}{E_0}$ with: Summation type model: $\varphi(\mathbf{t}, \mathbf{t}_0) = \varepsilon_{cc}(\mathbf{t}, \mathbf{t}_0) \cdot \frac{\mathbf{E}_{ci}}{\sigma_c(\mathbf{t}_0)}$ $\varphi(t, t_0) = \phi_r(t, t_0) + \phi_f(t) - \phi_f(t_0)$ delayed Approximation: elasticity $\varepsilon_{c\sigma}(t) = \frac{\sigma_{c}(t_{o})}{\mathsf{E}_{ci}} \cdot \left[1 + \rho(t, t_{o}) \cdot \phi(t, t_{o})\right]$ Both types of model may be expressed as:

total creep = basic creep + drying creep

 $\rho(t,t_0) \approx 0.80$

with:

Creep prediction for Brazilian concretes

Statistical assessment

e retração e sua utilização na monitoração de pilares de concreto

The model predicts the creep deformations in both cases within the expected scatter range

Constitutive modelling of creep

$$\varphi(t,t_{0}) = \beta_{bc}(f_{cm}) \cdot \beta_{bc}(t,t_{0}) + \beta_{dc}(f_{cm}) \cdot \beta(RH) \cdot \beta_{dc}(t_{0}) \cdot \beta_{dc}(t,t_{0})$$

basic creep drying creep
Extension in MC 2020 – Total creep
$$\varphi(t,t_{0}) = \xi_{bc1} \cdot \varphi_{bc}(t,t_{0}) + \xi_{dc1} \cdot \varphi_{dc}(t,t_{0})$$

adaption factors
for creep magnitude
$$\varphi(t,t_{0}) = \left\{ \frac{30}{t_{0,adj}} + 0.035 \right\}^{2} \cdot \frac{(t-t_{0})}{\xi_{bc2}} + 1 \right\}$$

adaption factors
for time-
$$\beta_{dc}(t,t_{0}) = \left(\frac{(t-t_{0})}{\beta_{h} \cdot \xi_{dc2} + (t-t_{0})} \right)^{r(t_{0})} development$$

Adaption factors to be determined from a few well-defined creep tests

Improvement of creep prediction by short-term tests

Accuracy gain through tests: Coefficient of variation drops from V \approx 30 % to V \approx 10 %

Durability

Deterioration processes and limit states

Deterioration processes and limit states

Service life design – **Basic approaches**

Descriptive Concept

approach: R - S > 0

Descriptive Concept of Eurocode 2, national standards

	action S	resistance R				
empirical data (carbon. induced corrosion)	ambient conditions	max w/c [-]	min β [N/mm²]	min c [kg/m³]	concrete cover [mm]	
	XC 4: reinf. corrosion alternate wet/dry	0.50	C30/37	300	40	

Service life design – Basic approaches

Service life design – Basic approaches

Descriptive Concept	Probabilistic Concept		
approach: R – S > 0	approach: $p_f(t) = p_f[R(t) - S(t) \le 0] \le p_{target}$		

Descriptive Concept:

- very simple but also very crude: "deemed to satisfy"
- service life is fixed, e.g. 50 years; no information on other ages, e.g. 20 or 100 years
- no information on the failure probability (risk of failure, damage development)

Probabilistic Concept:

- overcomes all weeknesses of the Decriptive Concept
- needs damage models (not yet available for some deteroriation processes)
- needs statistical software and tests on concrete

⇒ Target for MC 2020: Find compromise for everyday practice

Descriptive Concept of Eurocode 2, national standards Probabilistic Concept of *fib* Model Code 2010

	action S	resistance R				nhysical		
empirical data (carbon. induced corrosion)	ambient conditions	max w/c [-]	min β [N/mm²]	min c [kg/m ³]	concrete cover	(carbon. induced corrosion)	$S = x_{c}(t) = \sqrt{2 \cdot k_{e} \cdot k_{c} \cdot (k_{t} \cdot R_{ACC,0}^{-1} + \varepsilon_{t}) \cdot C_{s}} \cdot \sqrt{t} \cdot W(t)$	
	XC 4: reinf. corrosion alternate wet/dry	0.60	C25/30	280	40		R = c = const; c = concrete cover	

Carbonation induced corrosion – Simplified design aid

Performance testing (ACC-Test, 28 days of curing and 28 days of testing)

 $\mathsf{R}_{\mathsf{ACC},0}^{-1} = \left(\frac{\mathsf{x}_{\mathsf{c}}}{\tau}\right)^2 \qquad \mathsf{R}_{\mathsf{ACC},0}^{-1}$ inverse effective carbonation resistance of concrete [(m²/s)/(kg/m³)]

time constant for described test conditions ($\tau = 420$) [(s/kg/m³)^{0.5}]

measured carbonation depth [m]

Design parameters						
R ^{_1} _{ACC,0} [(m²/s)/(kg/m³)]	Service life [years]	β [-]	р _f [%]			
	50	1.7	5			
high values	50	1.3	10			
(> 1,7·10 ⁻¹⁰)	100	1.7	5			
	100	1.3	10			
	50	1.7	5			
medium values	50	1.3	10			
(1,7⋅10 ^{-™} – 1,9⋅10 ⁻¹¹)	400	1.7	5			
, ,	100	1.3	10			
	50	1.7	5			
low values	50	1.3	10			
(< 1,9·10 ^{−11})	100	1.7	5			
	100	1.3	10			

Carbonation induced corrosion – Simplified design aid

Performance testing (ACC-Test, 28 days of curing and 28 days of testing)

 $\mathsf{R}_{\mathsf{ACC},0}^{-1} = \left(\frac{\mathsf{x}_{\mathsf{c}}}{\tau}\right)^2 \qquad \mathsf{R}_{\mathsf{ACC},0}^{-1}$ inverse effective carbonation resistance of concrete [(m²/s)/(kg/m³)]

time constant for described test conditions ($\tau = 420$) [(s/kg/m³)^{0.5}]

measured carbonation depth [m]

	Design param	eters	Design results			
R ⁻¹ _{ACC,0} Service lif		β	p _f	Carbonation depth / Concrete cover c [mm]		
[(m²/s)/(kg/m³)]	[years]	[-]	[%]	Indoors [50 %]	Outdoors [80 %]	
high values (> 1,7⋅10 ⁻¹⁰)	50	1.7	5	95	75	
		1.3	10	90	65	
	100	1.7	5	135	110	
		1.3	10	125	95	
medium values (1,7·10 ⁻¹⁰ – 1,9·10 ⁻¹¹)	50	1.7	5	35	30	
		1.3	10	30	25	
	100	1.7	5	50	40	
		1.3	10	45	35	
low values (< 1,9⋅10 ⁻¹¹)	50	1.7	5	20	15	
		1.3	10	15	10	
	100	1.7	5	30	20	
		1.3	10	20	15	

Carbonation induced corrosion – Simplified design aid (2)

Limit state: Depassivation due to carbonation

Service life: 100 years

Service life: 50 years

Conclusions and outlook

- With respect to the variety of different concrete types to be addressed in MC 2020 the classical strength based approach for modelling concrete behaviour has to be partially shifted towards a performance based modelling.
- Models for strength and deformation characteristics in MC 2020 will be presented such that test results obtained on the respective concrete may be introduced to improve the accuracy considerably.
- For the performance based concept for durability and service life prediction suitable simplified design tools will be made available. These tools will be as simple as the deemed-to-satisfy approaches of today but much more accurate.

Thank you for your attention!